177. 1,2-Epoxycarotinoide

5. Mitteilung

Synthese von (S)-1,2-Epoxy-1,2,7,8,7',8'-hexahydro- Ψ , Ψ -carotin ((S)-1,2-Epoxy-1,2-dihydro- ζ -carotin)

von Christoph Arm1) und Hanspeter Pfander*

Institut für organische Chemie der Universität Bern, Freiestr. 3, CH-3012 Bern

(23.V.84)

1,2-Epoxycarotenoids. Synthesis of (S)-1,2-Epoxy-1,2,7,8,7',8'-hexahydro- Ψ , Ψ -carotene ((S)-1,2-Epoxy-1,2-dihydro- ζ -carotene)

Summary

The synthesis of (S)-1,2-Epoxy-1,2-dihydro- ζ -carotene ((all-E,S)-1) using (E,E)-farnesol (3) as starting material, and a *Sharpless* epoxidation as key step is described.

Einleitung und Problemstellung. – In früheren Arbeiten [1–3] haben wir über die Synthese von racemischem und (S)-1,2-Epoxy-1,2-dihydrolycopin (1,2-Epoxy-1,2-dihydro- Ψ , Ψ -carotin), racemischem und (S)-1',2'-Epoxy-1',2'-dihydro- γ -carotin (1',2'-Epoxy-1',2'-dihydro- β , Ψ -carotin) und racemischem 1',2'-Epoxy-1',2'-dihydro- δ -carotin (1',2'-Epoxy-1',2'-dihydro- ϵ , Ψ -carotin) berichtet, welche aus Tomaten isoliert worden waren [4–6], sowie über das bisher in der Natur nicht gefundene racemische 1,2,1',2'-Diepoxy-1,2,1',2'-tetrahydrolycopin (1,2,1',2'-Diepoxy-1,2,1',2'-tetrahydrolycopin (1,2,1',2'-Diepoxy-1,2,1',2'-tetrahydro- Ψ , Ψ -carotin). Aus Tomaten wurde von Ben-Aziz [4] auch das 1,2-Epoxy-1,2,7,8,7',8'-hexahydro- Ψ , Ψ -carotin (1,2-Epoxy-1,2-dihydro- ζ -carotin) isoliert, wobei sich die Autoren wegen der geringen zur Verfügung stehenden Menge für den Strukturvorschlag auf UV/VIS-und Massenspektren sowie auf das chemische und chromatographische Verhalten stützten. Für den endgültigen Strukturbeweis fehlten hingegen die NMR-Daten. Zudem ist über die Konfiguration am C(2) der Verbindung nichts bekannt.

In der vorliegenden Arbeit berichten wir über die Synthese von (S)-1,2-Epoxy-1,2-dihydro- ζ -carotin ((all-E,S)-1), welche insbesonders im Hinblick auf die Abklärung der Konfiguration des Naturproduktes durchgeführt wurde.

Syntheseplanung. – Für die Synthese der gewünschten Verbindung wurde das Aufbauschema $C_{15} + C_{10} + C_{15} = C_{40}$ gewählt. Als symmetrisches Mittelstück wurde der leicht zugängliche C_{10} -Dialdehyd **2** (12,12'-Diapocarotin-12,12'-dial) verwendet²). Dieser

Teil der geplanten Dissertation von C. Arm.

²⁾ Wir danken der Firma F. Hoffmann-La Roche & Co. AG, Basel für die Überlassung dieser Verbindung.

Syntheseweg wurde bereits von *Davis* [7] für die Herstellung von ζ -Carotin (7,8,7',8'-Tetrahydro- Ψ , Ψ -carotin) angewendet. Wie in *Schema 1* gezeigt ist, wählten wir für die enantioselektive Synthese des eigentlichen Schlüsselprodukts, des (S)-Epoxyfarnesyl-Wittig salzes (S)-9, die *Sharpless*-Epoxidierung [8] [9] des entsprechenden allylischen Alkohols 5.

$$OAc \xrightarrow{Schema 1} P(C_6H_5)_3B$$

$$(S)-9$$

Sharpless-
Epoxidierung
OH
$$(S,S)-6$$
OAC
$$\frac{1) \text{ TsCl}}{2) \text{ Nal}}$$
OAC
$$\frac{K_2CO_3}{MeOH}$$

$$(S,S)-7$$

Ergebnisse und Diskussion. - Wie Schema 2 zeigt, wurde das Ausgangsmaterial, (E,E)-Farnesol²) (3) mit Ac₂O/Pyridin acetyliert. Die anschliessende Oxydation nach [10] mit SeO₂/t-Butylhydroperoxid (t-BuOOH; 70% in H₂O) in CH₂Cl₂ führte in 26% Ausbeute zum allylischen Alkohol 5, der nach Sharpless [8] [9] mit (+)-L-Weinsäurediäthylester, Titantetraisopropoxid (Ti(i-PrO)₄) und t-BuOOH in CH₂Cl₂ bei -20° in 81% Ausbeute (nach Chromatographie) stereoselektiv in das Epoxid (S,S)-6 umgewandelt wurde, $[\alpha]_D^{25} = -6.5^{\circ}$ (c = 1.056, MeOH). Die OH-Gruppe wurde mit Tosylchlorid in Pyridin tosyliert [9], und Reaktion mit NaI in Aceton [9] führte zum entsprechenden primären Iodid. Anschliessende Reduktion mit Natriumcyanoborhydrid in Hexamethylphosphortriamid (HMPA)/THF [9] lieferte in 53% Ausbeute (bzgl. (S,S)-6) das (S)-Epoxyfarnesylacetat (S)-7, $[\alpha]_D^{25} = -5.1^\circ$ (c = 1,228, MeOH). Die Verseifung der Acetylgruppe mit K₂CO₃ in MeOH ergab in 99% Ausbeute das (S)-Epoxyfarnesol (S)-8, $[\alpha]_D^{25} = -4.7^\circ$ (c = 0.951, MeOH) ([14]: $[\alpha]_D^{25} = -1.8^\circ$ (c = 1.70, MeOH)). Zur Herstellung des Wittig salzes (S)-9 wurde der primäre allylische Alkohol (S)-8 mit N-Bromsuccinimid (NBS)/Me₂S in CH₂Cl₂ bei 0° in das Bromid umgewandelt [11] und letzteres bei Raumtemperatur mit Triphenylphosphin (Ph₃P) in Et₂O umgesetzt (Ausbeute an (S)-9 bzgl. (S)-8: 41%).

Schema 3

1) PBr₃
OH
$$\frac{1}{2}$$
 P(C_eH_e)₃

$$\frac{1}{2}$$
 P(C_eH_s)₃Br

Zur Synthese der anderen Endgruppe diente, wie aus Schema 3 ersichtlich, als Ausgangsprodukt ebenfalls (E,E)-Farnesol (3), das mit PBr₃ in Petroläther bei 0° bromiert wurde [7]. Umsetzung des Bromids mit Ph₃P in Et₂O lieferte in 30% Ausbeute (bzgl. 3) das Farnesyl-Wittig salz 10. Die Verbindung 10 wurde anschliessend in einer 2-Phasen-Wittig reaktion (CH₂Cl₂/2N NaOH) mit dem C₁₀-Dialdehyd 2 zum (all-E)-C₂₅-Aldehyd 11 (7,8-Dihydro-12'-apo-12'-lycopinal) umgesetzt (Schema 3). Die Ausbeute an (all-E)-Isomeren betrug 40% nach chromatographischer Reinigung (Abtrennung der (Z)-Isomeren).

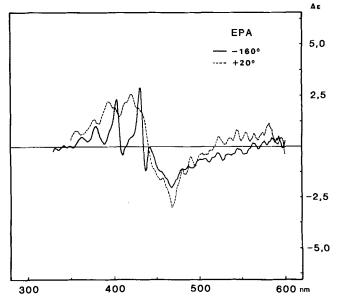


Fig. CD-Spektrum von synthetischem (all-E,S)-1. EPA = $Et_2O/Isopentan/EtOH$ 5:5:2.

Die Synthese von (all-E,S)-1,2-Epoxy-1,2-dihydro- ζ -carotin ((all-E,S)-1) gelang in ca. 5% Ausbeute durch Umsetzung des Epoxyfarnesyl-Wittig salzes (S)-9 mit dem C_{2s} -Aldehyd 11 im 2-Phasen-System 2N NaOH/CH₂Cl₂. Die Reinigung und Abtrennung von zwei bei der Reaktion entstandenen, nicht weiter untersuchten Nebenprodukten und dem grossen Teil nicht umgesetzten C_{2s} -Aldehyds 11 erfolgte durch präparative DC und anschliessende Kristallisation. Die spektroskopischen Daten stehen im Einklang mit der postulierten Struktur.

Im UV/VIS-Spektrum von (all-E,S)-1 sind erwartungsgemäss die Maxima bei 425, 400, 378 und 359 nm und der Habitus identisch mit denjenigen des ζ -Carotins [7]. Im 1 H-NMR-Spektrum erscheint H-C(2) als t bei 2,69 ppm, die 2 CH₃-C(1) wie bei 1,2-Epoxy-1,2-dihydrolycopin [1] bei 1,25 und 1,30 ppm. Das MS zeigt das Molekelion bei m/z 556 und u. a. die charakteristischen Fragmente $M^{+}-18$, $M^{+}-137$ und $M^{+}-153$. Im Gegensatz zu Ben-Aziz [4] wurde im MS zudem eine Wasserabspaltung festgestellt, die jedoch auch von Berset [15] beobachtet wurde. Die übrigen Hauptfragmentierungen stimmen mit den in [4] veröffentlichten Daten überein. Das CD-Spektrum (EPA) der synthetischen (all-E)-Verbindung ist in der Figur bei -160° und $+20^{\circ}$ gezeigt. Bei -160° sind negative Maxima bei 468, 438 und 411 nm zu erkennen; die charakteristischen positiven Maxima liegen bei 430, 403 und 379 nm.

Wir danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung und der Firma F. Hoffmann-La Roche & Co. AG, Basel, für die Unterstützung dieser Arbeit. Besonderer Dank gilt Herrn Dr. H. Mayer und seiner Arbeitsgruppe für die anregenden Diskussionen und den Herren Dres. G. Englert, K. Noack und Herrn W. Vetter (Firma F. Hoffmann-La Roche & Co. AG, Basel) für die Aufnahme von Spektren.

Experimenteller Teil

Allgemeine Bemerkungen. Sämtliche Operationen wurden unter Ar oder N2 durchgeführt. Die verwendeten Lösungsmittel wurden nach üblichen Methoden [12] vorgereinigt und destilliert. Die Reagenzien wurden käuflich erworben (Fa. Merck, Fa. Fluka). Die Lösungsmittel für die HPLC-Chromatographie wurden von den Fa. Fluka oder Ammann-Technik erworben. Schmp: Bestimmungsapparatur nach Tottoli, die Werte wurden in offenen Kapillaren gemessen und sind korrigiert. [α]_D-Werte: Polarimeter *Perkin-Elmer 241*. UV/VIS-Spektren: Spektrophotometer Perkin-Elmer 554, Lösungsmittel: Uvasol, Merck; Angabe von λ_{max} in nm. CD-Spektren: modifizierter Dichrograph II (Fa. Jobin-Yvon); Angabe von Wellenlängen in nm (Δε). IR-Spektren: Perkin-Elmer 399B, Angaben in cm⁻¹, w = schwache, m = mittlere, s = starke Absorption. ¹H-NMR-Spektren: EM-360L (Fa. Varian) bei 60 MHz; WH-400 (Fa. Bruker-Spectrospin) bei 400 MHz. Chemische Verschiebungen δ in ppm bezüglich TMS (=0 ppm). Kopplungskonstanten J in Hz; s = Singulett, d = Dublett, t = Triplett, m = Multiplett. Massenspektren: Varian-Mat. CH-7A mit direkter Probeneinführung, Ionisationsspannung 70 V, Angabe von m/z (% relative Intensität). HPLC: Pumpe: Altex-110A; Detektor: Uvikon LCD 725; Schreiber: W + W Tarkan 600; Säulen: Stahlsäulen 4,6 × 250 mm; stationäre Phase: Spherisorb 5μ Nitril (Fa. Ergatech). DC: Merck-DC-Fertigplatten, Kieselgel 60 F 254 und Aluminiumoxid F 254; Merck-PSC-Fertigplatten, Kieselgel 60 F 254. Säulenchromatographie: Merck Kieselgel 60, Korngrössen 0,063-0,200 mm und 0,040-0,063 mm (für Blitz-Chromatographie); Camag Aluminiumoxid.

Essigsäure-f (E,E)-3,7,11-trimethyl-2,6,10-dodecatrien-1-yl]ester (4). In 140 ml Pyridin/Ac₂O 1:1 wurden 12,50 g (56,31 mmol) (*E,E*)-Farnesol (3) 1 Std. bei RT. gerührt. Dann wurde auf 0° gekühlt und 60 ml H₂O zugegeben. Nach 1 Std. Rühren wurde mit Et₂O versetzt, die H₂O-Phase abgetrennt und 2mal mit Et₂O extrahiert. Die vereinigten Et₂O-Extrakte wurden nacheinander mit 2n HCl, ges. NaHCO₃ und ges. NaCl gewaschen, über MgSO₄ getrocknet und i. RV. eingedampft. Der Rückstand (14,78 g (99,5%) klare farblose Flüssigkeit) war für die Weiterverarbeitung genügend rein. Eine Probe wurde an Kieselgel (Hexan/EtOAc 2:1) chromatographiert. IR (Film): 955w, 1020m, 1230s, 1365m, 1380m, 1445m, 1670w, 1740s, 2860m, 2920m, 2970m. 1 H-NMR (60 MHz, CDCl₃): 1,60 (s, 6H, CH₃(12), CH₃-C(11)); 2,05 (s, 3H, CH₃COO-C(1)); 1,90-2,30 (m, 8H, CH₂(4), CH₂(5), CH₂(8), CH₂(9)); 4,60 (d, J = 7, 2H, CH₂(1)); 4,90-5,30 (m, 2H, H-C(6), H-C(10)); 5,35 (t, J = 7, 1H, H-C(2)). MS: 264 (1, M +), 204 (2, M + - 60), 189 (3), 161 (6), 136 (20), 121 (13), 107 (17), 93 (37), 81 (37), 69 (100), 43 (32).

Essigsäure-[(E,E,E)-12-hydroxy-3,7,11-trimethyl-2,6,10--dodecatrien-1-yl]ester (5). Nach [10]: Zu einer Suspension von 1,05 g (9,4 mmol) SeO₂ in 50 ml CH₂Cl₂ wurden bei RT. 5,4 ml (37,6 mmol) t-BuOOH (70% in H₂O) gegeben und 30 Min. im Dunkeln gerührt. Dann wurden bei 10° 5,0 g (18,9 mmol) 3 in 10 ml CH₂Cl₂ zugetropft. Nach 3½ Std. Rühren bei 10° wurde die Lösung mit CH₂Cl₂ verdünnt, die org. Phase mit 10proz. NaHCO₃ und H₂O gewaschen, über MgSO₄ getrocknet und i. RV. eingedampft. Der Rückstand (5,96 g gelbe Flüssigkeit) wurde mit Blitz-Chromatographie (Säule 5 × 15 cm) an Kieselgel (Petroläther/EtOAc 3:1) gereinigt: 1,38 g (26,1%) farblose Flüssigkeit. IR (Film): 950w, 1020m, 1230s, 1360m, 1380m, 1735s, 2850m, 2910m, 3100–3600m. ¹H-NMR (60 MHz, CDCl₃): 1,65, 1,70, 1,75 (je s. je 3H, CH₃-C(3), CH₃-C(7), CH₃-C(11)): 2,05 (s, 3H, CH₃COO-C(1)): 2,00–2,30 (m, 9H, CH₂(4), CH₂(5), CH₂(8), CH₂(9), OH-C(12)): 4,00 (br. s. 2H, CH₂(12)): 4,60 (d, J = 7, 2H, CH₂(1)): 4,95–5,35 (m, 2H, H-C(6), H-C(10)): 5,40 (t, J = 7, 1H, H-C(2)). MS: 220 (2, M + 60), 202 (2), 161 (3), 159 (3), 135 (14), 134 (14), 121 (12), 119 (12), 107 (24), 93 (49), 81 (25), 68 (31), 55 (20), 43 (100).

Essigsäure-[(E,E,10S,11S)-10,11-epoxy-12-hydroxy-3,7,11-trimethyl-2,6-dodecadien-1-yl]ester ((S,S)-6).Nach [8]: Zu 60 ml CH₂Cl₂ wurden bei – 20° unter Rühren zuerst 1,16 g (4,07 mmol) Ti(i-PrO)₄, dann 0,84 g (4,07 mmol) L-(+)-Weinsäure-diäthylester getropft. Nach 5 Min. wurden 1,14 g (4,07 mmol) 5 in 5 ml CH₂Cl₂ und 2,48 ml (8,14 mmol) t-BuOOH (3,28m in CH_2CI_2 [13]) zugegeben. Die Lösung wurde 14 Std. bei -20° stehen gelassen. Dann wurden unter Rühren bei - 10° 20 ml 20proz. D-(+)-Weinsäurelösung zugegeben. Die H₂O-Phase wurde fest. Nach 30 Min. bei – 10° wurde bei RT. weitergerührt, bis die H₂O-Phase klar war. Dann wurde zwischen Et₂O/ges. NaCl verteilt, die vereinigte org. Phase über MgSO₄ getrocknet und i.RV. eingedampft. Der Rückstand wurde in 30 ml Et₂O aufgenommen und 30 Min. bei 0° mit 12 ml 1N NaOH gerührt. Die Phasen wurden getrennt, die Et₂O-Phase mit ges. NaCl neutral gewaschen, über MgSO₄ getrocknet und i.RV. eingedampft. Der Rückstand (2,21 g gelbe Flüssigkeit) wurde mit Blitz-Chromatographie (Säule 5 × 15 cm) an Kieselgel (Hexan/EtOAc 1:1) gereinigt: 0,97 g (80,6%) farblose Flüssigkeit, $[\alpha]_D^{25} = -6.5^\circ$ (c = 1,056, McOH). IR (Film): 870w, 950w, 1025m, 1235s, 1365m, 1380m, 1445m, 1665w, 1735s, 2860m, 2920m, 2960m, 3200 3600m. H-NMR (60 MHz, CDCl₃/D₂O): 1,25 (s, 3H, CH₃-C(11)); 1,65, 1,70 (je s, je 3H, CH₃-C(3), $CH_3-C(7)$); 2,05 (s, 3H, $CH_3COO-C(1)$); 1,90-2,35 (m, 8H, $CH_2(4)$, $CH_2(5)$, $CH_2(8)$, $CH_2(9)$); 3,00 (t, J=6, 1H, H-C(10)); 3,60 (d, J = 7, 2H, CH₂(12)); 4,60 (d, J = 7, 2H, CH₂(1)); 4,95-5,15 (m, 1H, H-C(6)); 5,40 (t, J = 7, 1H, H-C(2)). MS: 236 (1, M^{+} - 60), 218 (1, M^{+} - 78), 187 (2), 161 (4), 159 (4), 145 (8), 141 (12), 134 (27), 121 (19), 119 (26), 111 (23), 107 (20), 93 (98), 81 (74), 68 (42), 55 (43), 43 (100).

Essigsäure- f (E,E, 10S)-10,11-epoxy-3,7,11-trimethyl-2,6-dodecadien-1-yl]ester ((S)-7). Nach [9]: Zu 1,78 g (6,01 mmol) (S,S)-6 in 25 ml Pyridin wurden unter Rühren bei 0° portionenweise 2,16 g (11,37 mmol) TsCl gegeben. Dann wurde die Lösung 14 Std. bei 4° stehengelassen. Darauf wurde mit 20 ml halbges. NaCl versetzt und die H2O-Phase mit Et2O extrahiert. Die vereinigten Et2O-Extrakte wurden mit ges. CuSO4 und ges. NaCl gewaschen, über MgSO₄ getrocknet und i. RV. eingedampft. Der Rückstand (2,46 g gelbe Flüssigkeit) wurde in 100 ml Aceton gelöst und mit 2,10 g (14,0 mmol) Nal 21/2 Std. unter Rückfluss gekocht. Nach Abkühlung auf RT. wurde filtriert, das Filtrat i. RV. eingeengt, in Et₂O aufgenommen und zuerst mit H₂O, dann mit 10proz. Na₂S₂O₃ gewaschen, über MgSO₄ getrocknet und i. RV. eingedampft. Der Rückstand (2,15 g gelbe Flüssigkeit) wurde in 100 ml THF/HMPA 4:1 aufgenommen und portionenweise mit 2,55 g (40,5 mmol) NaBH₃CN versetzt. Nach 4½ Std. Rühren bei 60° wurde Eis zugegeben, die H2O-Phase 2mal mit Et3O extrahiert, die vereinigte org. Phase mit ges. NaCl gewaschen, über MgSO₄ getrocknet und i.RV. eingedampft. Der Rückstand (2,63 g, gelbe Flüssigkeit) wurde mit Blitz-Chromatographie (Säule 5 × 15 cm) an Kieselgel (Hexan/EtOAc 6:1) gereinigt: 0,89 g (52,9% bzgl. (S,S)-6) farblose Flüssigkeit, $[\alpha]_{0}^{125} = -5,1^{\circ}$ (c = 1,228, MeOH). IR (Film): 605w, 680w, 870w, 955w, 1020m, 1120w, 1230s, 1365m, 1375m, 1445m, 1740s, 2920s, 2950s. 1H-NMR (60 MHz, $CDCl_3$): 1,25, 1,30 (je s, je 3H, $CH_3-C(11)$, $CH_3(12)$); 1,65, 1,70 (je s, je 3H, $CH_3-C(3)$, $CH_3-C(7)$); 2,05 (s, 3H, $CH_3COO-C(1)$); 1,90-2,30 (m, 8H, $CH_2(4)$, $CH_2(5)$, $CH_2(7)$, $CH_2(8)$); 2,75 (t, J=6, 1H, H-C(10)); 4,60 (d, d) J = 7, 2H, CH₂(1)); 5,00–5,30 (m, 1H, H–C(6)); 5,35 (t, J = 7, 1H, H–C(2)). MS: 220 (2, M^+ – 60) 202 (2, M^{\pm} - 78) 159 (3), 153 (5), 149 (5), 135 (15), 134 (24), 121 (11), 119 (15), 109 (14), 107 (13), 95 (22), 93 (34), 85 (45), 81 (83), 71 (88), 59 (28), 55 (22), 43 (100), 41 (34).

(E,E,10S)-10,11-Epoxy-3,7,11-trimethyl-2,6-dodecadien-1-ol ((S)-8). In 30 ml MeOH wurden 0,89 g (3,18 mmol) (S)-7 und 1,0 g K₂CO₃ bei RT. 2 Std. gerührt. Nach Zugabe von 30 ml H₂O wurde das MeOH i. RV. abgedampft, dann wurde die H₂O-Phase mit Et₂O extrahiert. Die vereinigten Et₂O-Extrakte wurden mit ges. NaCl gewaschen, über MgSO₄ getrocknet und i. RV. eingedampft: 0,75 g (99,1%) farblose Flüssigkeit, $[\alpha]_D^{1S} = -4,7^\circ$ (c = 0,951, MeOH). IR (CHCl₃): 870m, 895m, 990s, 1110m, 1200m, 1380s, 1450s, 1665m, 2925s, 2960s, 3000s, 3200–3580m, 3600m, 3670s. ¹H-NMR (60 MHz, CDCl₃): 1,25, 1,30 (je s, je 3H, CH₃(12), CH₃-C(11)); 1,65, 1,70 (je s, je 3H, CH₃-C(3), CH₃-C(7)); 1,70–2,30 (m, 9H, CH₂(4), CH₂(5), CH₂(8), CH₂(9), OH-C(1)); 2,75 (t, t = 6, 1H, H-C(10)); 4,15 (t, t = 7, 2H, CH₂(1)); 5,00–5,40 (m, 1H, H-C(6)); 5,45 (t.

J = 7, 1H, H–C(2)). MS: 220 (1, M^+ – 18), 205 (2), 202 (1), 189 (2), 187 (1), 177 (2), 159 (4), 153 (6), 149 (4), 143 (11), 135 (21), 134 (21), 127 (13), 121 (21), 119 (17), 109 (29), 107 (23), 95 (38), 93 (48), 85 (57), 81 (100), 71 (100), 59 (38), 55 (32), 43 (100), 41 (49), 39 (13).

[11]: Zu 1,13 g (5,13 mmol) NBS in 10 ml CH₂Cl₂ wurden bei 0° innert 3 Min. 0,57 ml (7,77 mmol) Me₂S getropft. Die Lösung wurde gelb und trüb. Dann wurde auf – 20° gekühlt und unter Rühren mit 0,50 g (2,10 mmol) (S)-8 in 3 ml CH₂Cl₂ langsam versetzt. Die gelbe Farbe verschwand wieder. Es wurde auf 0° erwärmt und 1½ Std. gerührt. Dann wurde die Lösung mit Hexan verdünnt und auf H₂O/Eis gegossen. Die H₂O-Phase wurde mit Hexan extrahiert, die vereinigte org. Phase mit ges. NaCl gewaschen, über Na₂SO₄ getrocknet und i.RV. eingedampft. Der Rückstand (0,55 g farblose Flüssigkeit) wurde in 10 ml Et₂O aufgenommen und unter Rühren mit 0,65 g (2,50 mmol) Ph₃P in 4 ml Et₂O versetzt. Nach 22 Std. wurde das ausgefallene *Wittig* salz abfiltriert, mit Hexan gewaschen und i.HV. getrocknet: 0,42 g (41% bzgl. (S)-8) weisser Feststoff, Schmp. 99–101°.

f(E,E)-3,7,11-Trimethyl-2,6,10-dodecatrienyl]triphenylphosphoniumbromid (10). Zu einer Lösung von 0,50 g (1,85 mmol) PBr₃ und 58 µl Pyridin in 10 ml Petroläther wurden bei -10° 1,00 g (4,5 mmol) (*E,E*)-Farnesol (3) in 5 ml Petroläther getropft. Nach 1 Std. Rühren bei -10° wurde die Lösung auf 10 ml H₂O/Eis gegossen. Die H₂O-Phase wurde mit Et₂O extrahiert, die vereinigte org. Phase mit 7proz. NaHCO₃ und ges. NaCl gewaschen, über MgSO₄ getrocknet und i. RV. eingedampft. Der Rückstand (1,05 g farblose Flüssigkeit) wurde in 10 ml Et₂O gelöst und unter Rühren mit 1,50 g (5,75 mmol) Ph₃P in 5 ml Et₂O versetzt. Nach 26 Std. wurde das ausgefallene *Wittig* salz abfiltriert, mit Et₂O gewaschen und i. HV. getrocknet: 0,74 g (30% bzgl. 3) weisses Pulver, Schmp. 118–120°.

(all-E)-7,8-Dihydro-12'-apo-12'-lycopinal (= 7,8-Dihydro-12'-apo-Ψ-carotin-12'-al; 11). In 4 ml CH₂Cl₂ wurden 125 mg (0,762 mmol) C_{10} -Dialdehyd 2 gelöst und mit 15 ml 2N NaOH überschichtet. Unter heftigem Rühren wurden 300 mg (0,548 mmol) 10 in 4 ml CH₂Cl₂ tropfenweise zugegeben. Dann wurden die Phasen getrennt, die org. Phase wurde mit Phosphatpuffer (pH = 7) neutral gewaschen, über MgSO₄ getrocknet und i. RV. eingedampft. Der Rückstand wurde mit präp. DC gereinigt: 1. Reinigungsschritt: Kieselgel, Schichtdicke 2 mm (Hexan/EtOAc 7:1); 2. Reinigungsschritt: Kieselgel, Schichtdicke 0,25 mm (Hexan/EtOAc 7:1). Ausbeute: 77 mg (40% bzgl. 10) orangegelbes Öl mit einem (all-E)-Gehalt von ca. 95% nach HPLC-Analyse (Spherisorb 5μ Nitril, Hexan/CH₂Cl₂ (20%); Fluss: 1,0 ml/Min.; Detektion: 400 nm; Retentionszeit von (all-E)-11: 8,9 Min.). UV/VIS (Hexan): 407, 385, 367. MS: 352 (2, M^+), 261 (2, M^+ – 91), 215 (3, M^+ – 137), 177 (30), 149 (40), 136 (32), 121 (36), 109 (45), 107 (31), 95 (48), 93 (51), 81 (82), 69 (100), 59 (52), 55 (35), 43 (87), 41 (52). Die übrigen physikalischen Daten stimmen mit [16] überein.

(all-E,2S)-1,2-Epoxy-1,2,7,8,7',8'-hexahydro-Ψ,Ψ-carotin ((S)-1). In 4 ml CH₂Cl₂ wurden 77 mg (0,218 mmol) (all-E)-11 mit 16 ml 2N NaOH überschichtet. Unter heftigem Rühren wurden 203 mg (0,361 mmol) (S)-9 in 4 ml CH₂Cl₂ tropfenweise zugegeben. Dann wurden die Phasen getrennt, die org. Phase wurde 3mal mit Phosphatpuffer (pH = 7) gewaschen, über MgSO₄ getrocknet und i.RV. eingedampft. Der Rückstand wurde mit präp. DC (Al₂O₃, Schichtdicke 0,25 mm; Hexan/EtOAc 4:1) gereinigt und dann wurde aus CH₂Cl₂/MeOH kristallisiert: 5,7 mg (4,6% bzgl. 11) orangegelber Feststoff. Gehalt an (all-E)-Isomeren: ca. 95% nach HPLC-Analyse (Spherisorb 5μ Nitril, Hexan/t-Butylmethyläther (2%)/N-Äthyldiisopropylamin (0,1%); Fluss: 1,0 ml/ Min., Detektion: 425 nm; Retentionszeit von (all-E,S)-1: 9,8 Min.) CD: (EPA, -160°): 468,1 (-2,02), 442,8 (-0.06), 437.8 (-1.09), 430.1 (2.87), 410.9 (-0.36), 402.6 (2.34), 389.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.14), 378.7 (1.02), 369.8 (0.27), 362.0 (0.27), 362(0,48), 336,3 (-0,16), 332,2 (-0,07). CD (+20°): 480,3 (-1,10), 467,0 (-3,01), 420,0 (2,56), 406,2 (1,46), 393,0 (2,21), 383,0 (1,13), 377,0 (1,34), 362,0 (0,58), 356,8 (0,78). UV/VIS (Hexan): 425, 400, 378, 359, 232. IR (CHCl₃): 830m, 870m, 895m, 965s, 1015s. 1120m, 1325m, 1380s, 1450s, 1590w, 1630w, 1670w, 2860s, 2920s, 2960s, 3000s, 3300-3550w, 3640w. ¹H-NMR (400 MHz, CDCl₃): 1,25, 1,30 (je s, je 3H, CH₃(16), CH₃(17)); 1,60, 1,61 (je m, je 3H, $CH_3(18)$, $CH_3(18')$); 1,63, 1,68 (je m, je 3H, $CH_3(16')$, $CH_3(17')$); 1,59-1,66 (m, 2H, $CH_2(3)$); 1,82 (s, 6H, CH₃(19), CH₃(19')); 1,94 (s, 6H, CH₃(20), CH₃(20')); 1,91-2,20 (m, 14H, CH₂(3'), CH₂(4'), CH₂(4'), $CH_2(7)$, $CH_2(7')$, $CH_2(8)$, $CH_2(8')$); 2,69 (t, J = 6.5, 1H, H-C(2)); 5,05-5,20 (m, 3H, H-C(6), H-C(6'), H-C(2'); 5,45 (br. d, J=10.5, 2H, H-C(10), H-C(10')); 6,16-6,21 (m, 2H, H-C(14), H-C(14')); 6,23 (br. d, J = 15, 2H, H-C(12), H-C(12')); 6,48, 6,49 (je dd, J = 15, 10,5, 2H, H-C(11), H-C(11')); 6,56-6,61 (m, 2H, H-C(15), H-C(15')). MS: 556 (4, M^{\pm}), 538 (3, $M^{\pm}-18$), 419 (1, $M^{\pm}-137$), 403 (2, $M^{\pm}-153$), 209 (5), 197 (6), 185 (5), 183 (4), 173 (7), 171 (7), 169 (5), 159 (10), 157 (12), 147 (11), 145 (16), 143 (12), 135 (13), 133 (24), 125 (19), 121 (17), 119 (18), 109 (22), 107 (24), 105 (25), 95 (23), 93 (26), 91 (28), 81 (40), 79 (18), 69 (71), 55 (30), 43 (100), 41 (50), 28 (29).

LITERATURVERZEICHNIS

- [1] H. Pfander, M. Kamber & Y. Battegay-Nussbaumer, Helv. Chim. Acta 63, 1367 (1980).
- [2] H. Pfander & M. Kamber, Helv. Chim. Acta 63, 1792 (1980).
- [3] M. Kamber, H. Pfander & K. Noack, Helv. Chim. Acta 67, 968 (1984).
- [4] A. Ben-Aziz, G. Britton & T. W. Goodwin, Phytochemistry 12, 2759 (1973).
- [5] G. Britton & T. W. Goodwin, Phytochemistry 14, 2530 (1975).
- [6] D. Berset & H. Pfander, Helv. Chim. Acta 67, 964 (1984).
- [7] J.B. Davis, L.M. Jackman, P.T. Siddons & B.C.L. Weedon, J. Chem. Soc. (C) 1966, 2514.
- [8] E. Rossiter, T. Katsuki & K.B. Sharpless, J. Am. Chem. Soc. 103, 464 (1981); U.S. Martin, S.S. Woodward, T. Katsuki, Y. Yamada, M. Ikeda & K.B. Sharpless, ibid. 103, 637 (1981); T. Katsuki & K.B. Sharpless, ibid. 102, 5974 (1980).
- [9] W. Eschenmoser, P. Uebelhart & C.H. Eugster, Helv. Chim. Acta 66, 82, (1983).
- [10] F. W. Sum & L. Weiler, Tetrahedron Lett. 1981, 303.
- [11] E.J. Corey, C.U. Kim & M. Takeda, Tetrahedron Lett. 1972, 4339.
- [12] R. K. Müller & R. Keese, (Grundoperationen der präparativen organischen Chemie), Juris Verlag, Zürich, 1981.
- [13] K.B. Sharpless & T. Verhoeven, Aldrichim. Acta 12, 63 (1979).
- [14] Y. Suzuki & S. Marumo, J. Chem. Soc., Chem. Commun. 1971, 1199.
- [15] D. Berset, persönliche Mitteilung.
- [16] M.S. Barber, L.M. Jackman, P.S. Manchand & B.C.L. Weedon, J. Chem. Soc. (C) 1966, 2166.